人工智能技术的应用?
500
2024-04-26
1.学习或者回忆一些数学知识
因为计算机能做的就只是计算,所以人工智能更多地来说还是数学问题[1]。我们的目标是训练出一个模型,用这个模型去进行一系列的预测。于是,我们将训练过程涉及的过程抽象成数学函数:首先,需要定义一个网络结构,相当于定义一种线性非线性函数;接着,设定一个优化目标,也就是定义一种损失函数(loss function)。
而训练的过程,就是求解最优解及次优解的过程。在这个过程中,我们需要掌握基本的概率统计、高等数学、线性代数等知识,如果学过就最好,没学过也没关系,仅仅知道原理和过程即可,有兴趣的读者可以涉猎一些推导证明。
2.掌握经典机器学习理论与基本算法
这些基本算法包括支持向量机、逻辑回归、决策树、朴素贝叶斯分类器、随机森林、聚类算法、协同过滤、关联性分析、人工神经网络和BP算法、PCA、过拟合与正则化等。[2]
在本书“实战篇”的第8章到第13章的例子中也有贯穿这些算法知识,保证读者可以用它写出一个小的TensorFlow程序。
3.掌握一种编程工具(语言)
Python语言是一种解释型、面向对象、动态数据类型的高级程序设计语言。Python是很多新入门的程序员的入门编程语言,也是很多老程序员后来必须掌握的编程语言。我们需要重点掌握使用线性代数库和矩阵的操作,尤其是Numpy、Pandas第三方库,也要多试试机器学习的库,如sklearn,做一些SVM及逻辑回归的练习。这对直接上手写TensorFlow程序大有裨益。
有些工业及学术领域的读者还可能擅长MATLAB或R,其实现算法的思想和Python也很类似。
同时考虑到许多读者是使用C++、Java、Go语言的,TensorFlow还提供了和Python“平行语料库”的接口。虽然本书是主要是基于Python讲解的,对于其他语言的原理和应用API也都非常类似,读者把基础掌握后,只需要花很短的时间就能使用自己擅长的语言开发。另外对于Java语言的同学,本书第18章会讲解TensorFlowOnSpark,第19章会讲到TensorFlow的移动端开发。
4.研读经典论文,关注最新动态和研究成果
一些经典论文是必读的。例如,要做手写数字识别,若采用LeNet,要先阅读一下LeNet的学术论文;要做物体目标检测的训练,若选定MSCNN框架,可以先读MSCNN相关的论文。那么,论文从哪里找呢?那么多论文应该读哪篇呢?
下面以GoogleNet的TensorFlow实现为例。在GitHub[3]上,一般在开头的描述中就会说明这个模型所依据的论文,如图所示。
顺着这篇论文阅读,可以大致了解这个网络的实现原理,对迅速上手应用有很大的作用。同时,我在第6章也会对LeNet、AlexNet、ResNet这几个常见的网络进行讲解,帮助读者举一反三。
很多做模式识别的工作者之所以厉害,是因为他们有过很多、很深的论文积累,对模型的设计有很独到的见解,而他们可能甚至一行代码也不会写,而工程(写代码)能力在工作中很容易训练。许多工程方向的软件工程师,工作模式常常在实现业务逻辑和设计架构系统上,编码能力很强,但却缺少论文积累。同时具有这两种能力的人,正是硅谷一些企业目前青睐的人才。
读者平时还可以阅读一些博客、笔记,以及微信公众号、微博新媒体资讯等,往往一些很流行的新训练方法和模型会很快在这些媒体上发酵,其训练神经网络采用的一些方法可能有很大的启发性。
5.自己动手训练神经网络
接着,就是要选择一个开源的深度学习框架。选择框架时主要考虑哪种框架用的人多。人气旺后,遇到问题很容易找到答案;GitHub上关于这个框架的项目和演示会非常多;相关的论文也会层出不穷;在各个QQ群和微信群的活跃度会高;杂志、公众号、微博关注的人也会很多;行业交流和技术峰会讨论的话题也多;也能享受到国内外研究信息成果的同步。
目前这个阶段,TensorFlow因为背靠谷歌公司这座靠山,再加上拥有庞大的开发者群体,而且采用了称为“可执行的伪代码”的Python语言,更新和发版速度着实非常快。目前TensorFlow已经升级到1.0版,在性能方面也有大幅度提高,而且新出现的Debugger、Serving、XLA特性也是其他框架所不及的。此外,一些外围的第三方库(如Keras、TFLearn)也基于它实现了很多成果,并且Keras还得到TensorFlow官方的支持。TensorFlow支持的上层语言也在逐渐扩大,对于不同工程背景的人转入的门槛正在降低。
在GitHub[4]上有一个关于各种框架的比较,从建模能力、接口、模型部署、性能、架构、生态系统、跨平台等7个方面进行比较,TensorFlow也很占综合优势。截至2017年1月,TensorFlow的star数已经超过了其他所有框架的总和,如图1-8所示。
因此,从目前来看,投身TensorFlow是一个非常好的选择,掌握TensorFlow在找工作时是一个非常大的加分项。
接下来就是找一个深度神经网络,目前的研究方向主要集中在视觉和语音两个领域。初学者最好从计算机视觉入手,因为它不像语音等领域需要那么多的基础知识,结果也比较直观。例如,用各种网络模型来训练手写数字(MNIST)及图像分类(CIFAR)的数据集。
6.深入感兴趣或者工作相关领域
人工智能目前的应用领域很多,主要是计算机视觉和自然语言处理,以及各种预测等。对于计算机视觉,可以做图像分类、目标检测、视频中的目标检测等;对于自然语言处理,可以做语音识别、语音合成、对话系统、机器翻译、文章摘要、情感分析等,还可以结合图像、视频和语音,一起发挥价值。
更可以深入某一个行业领域。例如,深入医学行业领域,做医学影像的识别;深入淘宝的穿衣领域,做衣服搭配或衣服款型的识别;深入保险业、通信业的客服领域,做对话机器人的智能问答系统;深入智能家居领域,做人机的自然语言交互;等等。
7.在工作中遇到问题,重复前六步
在训练中,准确率、坏案例(bad case)、识别速度等都是可能遇到的瓶颈。训练好的模型也不是一成不变的,需要不断优化,也需要结合具体行业领域和业务进行创新,这时候就要结合最新的科研成果,调整模型,更改模型参数,一步步更好地贴近业务需求。
[1] 这里,一些人担心人工智能超越人类还会产生哲学和伦理问题。我认为做这种讨论还为时尚早,严谨的数据基础是要突破的主要方向。
[2] 推荐读者阅读李航老师的《统计学习方法》,很快就能入门。
[3] https://github.com/tensorflow/models/tree/master/inception
[4] https://github.com/zer0n/deepframeworks
最后,初学者建议选择一本权威细致的TensorFlow教材,比如《TensorFlow技术解析与实战》。这本书的特点是基于TensorFlow1.1版本,技术讲解极为细致,配合人脸识别、图像识别、智能机器人的TensorFlow实战案例,也包揽了所有TensorFlow的高级特性。(《TensorFlow技术解析与实战》(李嘉璇)【摘要 书评 试读】- 京东图书)
如果是基础的算法,本质上就是简单的概率论和微积分,线代的运算,看懂了自己找相关的问题自己稍微算算就能掌握了。
当然可以通过比较学习,比较针对不同的问题不同算法之间的优劣,以及各种方法实现时采取的一些trick细节,想明白为什么这么做,能加深自己的理解。
如果是针对模型的学习,建议看相关论文,而且coding是少不了的,找到相关的数据集自己手动复现一下论文结果比光看论文效果明显很多。
人工智能(AI)和机器学习(ML)已经成为当今科技领域最为炙手可热的话题之一。随着人工智能技术的不断发展,机器学习算法的研究也日益深入。本文将就人工智能与机器学习算法的现状及未来发展进行探讨。
人工智能的概念自20世纪50年代便已经引起了学术界和产业界的广泛关注。随着计算能力的提升和数据的不断增长,人工智能技术得以快速发展。目前,人工智能已经渗透到我们生活的方方面面,包括自然语言处理、计算机视觉、智能驾驶等领域。
机器学习算法是人工智能的重要支柱之一,它通过让计算机自动学习和改进,使得计算机能够从数据中学习模式,并作出更为准确的预测。常见的机器学习算法包括监督学习、无监督学习和强化学习。
人工智能和机器学习算法之间存在密不可分的联系。人工智能是通过模拟人类智能实现任务的一门技术,而机器学习算法则是实现人工智能的关键工具之一。机器学习算法的发展推动了人工智能技术的不断进步。
在人工智能与机器学习算法的未来发展中,有几个关键趋势值得关注。首先,深度学习技术将继续在各个领域得到应用,并逐渐实现更加智能化的应用场景。其次,自然语言处理和计算机视觉等技术将迎来更大突破,为人工智能的发展打开新的可能性。最后,人工智能伦理和安全等问题也将成为人工智能发展中需要认真思考的议题。
人工智能与机器学习算法的研究将继续深入,为人类社会带来更多便利与创新。在未来的道路上,我们需要不断探索,追求更高的发展,以实现人工智能和机器学习算法在各个领域的更广泛应用。
随着科技的飞速发展,机器学习算法与人工智能已经成为当今数字化时代的关键驱动力之一。从智能语音助手到自动驾驶汽车,从个性化推荐系统到智能医疗,机器学习算法与人工智能的应用正在深刻改变着我们的生活和工作方式。
在这个充满活力和挑战的领域中,了解和应用各种机器学习算法至关重要。从监督学习到无监督学习,从深度学习到强化学习,不同的算法涵盖了不同的应用场景和解决方案。选择合适的机器学习算法不仅可以提高工作效率,还能够更好地实现技术创新和商业发展。
在人工智能领域中,机器学习算法是实现智能化的核心工具之一。根据学习方式和目标函数的不同,机器学习算法可以分为监督学习、无监督学习、半监督学习和强化学习等几大类。
监督学习是一种通过已知输入和输出数据来训练模型的方法。常见的监督学习算法包括线性回归、逻辑回归、支持向量机等。这些算法在分类、回归和预测等领域有着广泛的应用,比如金融风控、医疗诊断和市场营销等。
无监督学习则是一种通过未标记的数据来发现隐藏模式和结构的方法。聚类、降维和关联规则挖掘是常见的无监督学习算法。这些算法在数据分析、客户细分和推荐系统等方面发挥着重要作用。
强化学习是一种通过与环境交互来学习最优策略的方法。Q学习、深度强化学习和策略梯度是典型的强化学习算法。这些算法在游戏对弈、智能控制和自动驾驶等场景中表现出色。
随着数字化转型的加速推进,机器学习算法与人工智能的应用前景愈发广阔。从智能城市到智能健康,从工业互联网到智能交通,各行各业都将迎来人工智能的浪潮。
然而,机器学习算法与人工智能仍面临着一系列挑战。数据质量不足、模型解释性不强、算法偏差和不公平性等问题,都影响着人工智能的应用和发展。如何在保障隐私安全的前提下,有效利用数据资源和优化算法模型,成为了当前急需解决的关键问题。
为了更好地推动机器学习算法与人工智能的发展,我们需要加强跨学科合作,促进行业标准化,提高算法透明度,加强法规监管,推动人工智能的可持续发展和道德应用。
在机器学习算法与人工智能这个充满活力和潜力的领域中,持续学习和创新至关重要。只有不断探索前沿技术、拓展应用场景,我们才能更好地驾驭人工智能的力量,实现智能化未来的美好愿景。
1、先学好一种热门的编程语言基础,一定要精通;
2、学好数学,由浅入深,高等数学、线性代数、离散数学、概率论、数理统计、计算方法等等;
3、主要培养逻辑能力,可以去网上下载或参考经典算法题目的解法和思路,因为算数的部分计算机能搞定~4、不要束缚自己的思维,头脑风暴一般,随意思考,算法想怎么写就怎么写,你会发现突然就写对了,但不知道为什么会对=_=希望对你有帮助
误差反向传播(Error Back Propagation, BP)算法 1、BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。 1)正向传播:输入样本->输入层->各隐层(处理)->输出层 注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程) 2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层 其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。 BP算法基本介绍 含有隐层的多层前馈网络能大大提高神经网络的分类能力,但长期以来没有提出解决权值调整问题的游戏算法。1986年,Rumelhart和McCelland领导的科学家小组在《Parallel Distributed Processing》一书中,对具有非线性连续转移函数的多层前馈网络的误差反向传播(Error Back Proragation,简称BP)算法进行了详尽的分析,实现了Minsky关于多层网络的设想。由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。 BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传人,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。
做为参加实训的转行上岸者,提一点个人拙见,如有不当,还请谅解。
1.数学基础:
2.编程技能:
3.机器学习基础:
4.统计学知识:
5.数据处理和分析:
6.基本算法概念:
7.深度学习基础(可选):
8.领域知识(根据兴趣):
请注意,不需要一开始就精通所有这些知识。学习人工智能算法是一个渐进的过程,您可以从基础开始,逐步扩展您的知识。选择适合您当前水平的学习资源,并持续实践和探索,以提升您的技能和理解。
如果你是个小白,如果你是非计算机专业,如果你还是想学习AI职业技能。需要具备至少第一条技能,微积分先再复习复习吧。至于其他技能可以参加一些专业的培训,可以在短期内能从事相关岗位。然后再去工作岗位上,不断的积累和学习,假以时日未来可期!
(自述:我在深圳智谷一川参加了三个多月实训,二本非计算机专业,好在由于参加科研,数学复习的还可以,实训后平稳上岸。
但我还是要奉劝文科专业的学生谨慎选择,数学功底差,逻辑思维也不强的,我见过她们上岸很是吃力。在高强度的实训钟,求导都会晕头转向,慎选慎选!)
人工智能中的筛选算法是指用于从大量数据或信息中筛选出符合特定条件或标准的项或样本的算法。这些算法可以帮助人工智能系统自动地、高效地进行数据筛选和过滤,从而减少人工操作和提高工作效率。
以下是几种常见的人工智能筛选算法:
逻辑回归(Logistic Regression):逻辑回归是一种用于分类问题的线性模型。它通过将输入数据映射到一个概率值来进行分类,然后根据设定的阈值进行筛选。
决策树(Decision Tree):决策树是一种基于树状结构的分类算法。它通过一系列的判断条件对数据进行分割,最终将数据分为不同的类别或标签。
随机森林(Random Forest):随机森林是一种集成学习算法,它由多个决策树组成。每个决策树都对数据进行独立的判断和分类,最后通过投票或取平均值的方式得出最终结果。
支持向量机(Support Vector Machine,SVM):支持向量机是一种用于分类和回归问题的监督学习算法。它通过在特征空间中找到一个最优的超平面来进行分类,从而实现数据的筛选和分类。
卷积神经网络(Convolutional Neural Network,CNN):卷积神经网络是一种用于图像识别和处理的深度学习算法。它通过多层卷积和池化操作来提取图像的特征,并通过全连接层进行分类和筛选。
这些筛选算法在不同的应用场景中具有各自的优势和适用性。根据具体的需求和数据特点,选择合适的筛选算法可以提高人工智能系统的准确性和效率。
调度算法是指:根据系统的资源分配策略所规定的资源分配算法,如任务A在执行完后,选择哪个任务来执行,使得某个因素(如进程总执行时间,或者磁盘寻道时间等)最小。对于不同的系统目标,通常采用不同的调度算法。
在人工智能领域里,算法(Algorithm)是指如何解决一类问题的明确规范。算法可以执行计算,数据处理和自动推理任务,基本上就是可规量化的计算方式。算法主要作用是用于训练模型的。其中,算法具有下面4个特征:可行性、确定性、有穷性和拥有足够的情报。
然后算法的常有思路有一下几种:列举法、归纳法、递推法、递归法、减半递推技术和回溯法。