人工智能技术的应用?
500
2024-04-26
驳斥bó chì 解释: 激烈反驳别人的言论观点。 以正当的义愤驳斥他的邪说。 详细解释
1、亦作“驳斥”。1.反驳指斥。 清 薛福成 《代李伯相筹议日本改约暂宜缓允疏》:“嗣后该国屡欲翻悔,均经驳斥。” 鲁迅 《集外集拾遗补编·拳术与拳匪》:“我也知道拳术家中间,必有不信鬼道的人,但既然不见出头驳斥,排除谬见,那便是为潮流遮没,无从特别提开。” 魏巍 《东方》第四部第六章:“大妈驳斥道:‘谁要好了疮疤忘了疼,那就该叫他多想一想。’”
2、法律用语。犹驳回。 巴金 《谈<灭亡>》:“他们在六年前受到诬告被判决死刑,上诉八次都遭驳斥。”参见“ 驳回 ”。
人工智能的理论包括:
1.计算机视觉:计算机视觉技术运用由图像处理操作及机器学习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。
2.机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。
3.自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。
4.机器人技术:近年来,随着算法等核心技术提升,机器人取得重要突破。例如无人机、家务机器人、医疗机器人等。
5.生物识别技术:生物识别可融合计算机、光学、声学、生物传感器、生物统计学,利用人体固有的生体特性如指纹、人脸、虹膜、静脉、声音、步态等
TensorFlow是 谷歌基于DistBelief进行研发的第二代 人工智能 学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。
TensorFlow可被用于 语音识别或 图像识别等多项机器学习和深度学习领域。
1.计算机视觉:计算机视觉技术运用由图像处理操作及机器学习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。
2.机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。
3.自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。
4.机器人技术:近年来,随着算法等核心技术提升,机器人取得重要突破。例如无人机、家务机器人、医疗机器人等。
5.生物识别技术:生物识别可融合计算机、光学、声学、生物传感器、生物统计学,利用人体固有的生体特性如指纹、人脸、虹膜、静脉、声音、步态等
编码理论
研究信息传输过程中信号编码规律的数学理论。编码理论与信息论、数理统计、概率论、随机过程、线性代数、近世代数、数论、有限几何和组合分析等学科有密切关系,已成为应用数学的一个分支。编码是指为了达到某种目的而对信号进行的一种变换。其逆变换称为译码或解码。
根据编码的目的不同,编码理论有三个分支:
①信源编码。对信源输出的信号进行变换,包括连续信号的离散化,即将模拟信号通过采样和量化变成数字信号,以及对数据进行压缩,提高数字信号传输的有效性而进行的编码。
②信道编码。对信源编码器输出的信号进行再变换,包括区分通路、适应信道条件和提高通信可靠性而进行的编码。
③保密编码。对信道编码器输出的信号进行再变换,即为了使信息在传输过程中不易被人窃取而进行的编码。编码理论在数字化遥测遥控系统、电气通信、数字通信、图像通信、卫星通信、深空通信、计算技术、数据处理、图像处理、自动控制、人工智能和模式识别等方面都有广泛的应用。
关于人工智能基础理论包括以下几个方面:
1. 机器学习:机器学习是人工智能的核心领域之一,它是指让机器通过数据学习和自我改进的过程。机器学习包括监督学习、非监督学习、强化学习等。
2. 深度学习:深度学习是机器学习的一个分支,它使用神经网络来处理数据。深度学习已经在图像识别、语音识别、自然语言处理等领域取得了巨大的成功。
3. 神经网络:神经网络是一种模仿生物神经系统的计算模型,它由大量的神经元组成,可以处理大规模的数据和复杂的任务。
4. 知识表示与推理:知识表示与推理是人工智能的重要研究领域,它涉及到如何将知识表示为计算机可以理解和处理的形式,并利用这些知识进行推理和决策。
5. 计算机视觉:计算机视觉是人工智能的一个重要应用领域,它涉及到如何让计算机识别和理解图像和视频中的内容。
6. 自然语言处理:自然语言处理是人工智能的另一个重要应用领域,它涉及到如何让计算机理解和处理人类语言。
7. 智能机器人:智能机器人是人工智能的一个重要应用方向,它涉及到机器人的设计、控制、感知和决策等方面。
这些基础理论是人工智能的核心,它们相互关联,相互影响,共同推动着人工智能的发展。
十九世纪,英国数学家布尔、德•摩根提出了“思维定律“,这些可谓是人工智能的开端。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。
现实中我们上班工作赚钱辛苦,从底层做起,而好的职位早被人占了、晋升通道越来越狭窄;自己又不甘于现状。同时,网络时代各类信息实在太多了,一夜爆红、一夜暴富的情况时时闪现,让很多年轻人充满了不切实际的幻想,浮躁的很。
结果也就导致现代年轻人好高骛远,不切实际,没有行动。一辈子就这样幻想,渴望这有一天自己也能够随随便便就能获得自己想要的东西,也就没有了进取心。
人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。
逻辑学有两种意思,第一,狭义逻辑学,即研究如何推理的学问;第二,广义逻辑学,即研究人类思维规律的学问。由于推理是人类思维过程的一部分,因此,狭义逻辑学实际上是广义逻辑学的一部分。
当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。