人工智能技术的应用?
500
2024-04-26
人脸识别的芯片公司有汇顶科技。
人脸识别属于计算机视觉技术,是指使用计算机软件和硬件工具来识别个人面部特征,并把它们与一组存储在数据库中的身份特征进行对比。它是一种人工智能技术,因为它使用计算机视觉和机器学习等技术来处理图像和视频。
人脸识别芯片的发展前景十分广阔。随着人工智能技术的不断进步,人脸识别技术逐渐成为身份认证、安全防范等领域的关键技术之一。而人脸识别芯片作为实现高效、准确的人脸识别技术的关键组成部分,其发展前景不可小觑。首先,人脸识别芯片的应用场景正在不断拓展。除了传统的金融、安防、门禁等领域,人脸识别芯片还可以应用于智能终端、智能家居、智慧城市等新兴领域。在这些领域中,人们对于便捷、高效、安全的身份认证需求日益增长,为人脸识别芯片提供了广阔的市场空间。其次,人脸识别芯片的技术水平也在不断提升。随着深度学习、计算机视觉等技术的不断发展,人脸识别芯片的准确率、识别速度以及对于复杂环境的适应性都得到了显著提升。这为人脸识别技术在更多领域的应用提供了技术支持,也为人脸识别芯片的发展带来了更多可能性。此外,政策支持也是人脸识别芯片发展的重要因素之一。随着国家对于人工智能技术的重视程度不断提高,人脸识别技术作为其中的重要组成部分,得到了政策的大力支持。各级政府出台了一系列政策措施,鼓励企业加大研发投入,推动人脸识别技术的创新和应用,为人脸识别芯片的发展提供了良好的政策环境。然而,尽管人脸识别芯片的发展前景十分美好,但也面临着一些挑战和风险。例如,数据安全和隐私保护问题一直是人脸识别技术应用中的关键问题。在人脸识别芯片的应用过程中,需要严格遵守法律法规,确保个人隐私和数据安全。同时,还需要加强技术研发和应用探索,提高人脸识别技术的准确性和可靠性,降低误识率和假阳性率。综上所述,人脸识别芯片的发展前景十分美好。随着技术的不断进步和应用场景的不断拓展,人脸识别芯片将在更多领域得到应用。同时,政策支持和市场需求也将为人脸识别芯片的发展提供有力支持。但也需要关注数据安全和隐私保护等风险和挑战,加强技术研发和应用探索,为人脸识别芯片的发展创造更多机遇和价值。
人脸识别主要分为四个步骤:
Face Detection -> Face Alignment -> Feature Extraction -> Feature Matching [1]
对应: 人脸检测 -> 人脸对齐 -> 特征提取 -> 特征匹配, 如下图所示。
1 人脸检测
人脸检测(face detection)[2]是一种在任意数字图像中找到人脸的位置和大小的计算机技术。它可以检测出面部特征,并忽略诸如建筑物、树木和身体等其他任何东西。有时候,人脸检测也负责找到面部的细微特征,如眼睛、鼻子、嘴巴等的精细位置。
如下图所示,前两个人脸可以比较容易检测到,但后面一位面部都不部分遮挡,则不能很容易检测出来,这也是人脸检测的难点。 关于具体的检测算法,可以参考这篇简单的综述[3]。
2 人脸对齐
人脸对齐是将不同角度的人脸图像对齐成同一种标准的形状。先定位人脸上的特征点,然后通过几何变换(仿射、旋转、缩放),使各个特征点对齐(将眼睛、嘴等部位移到相同位置)。
3 特征提取
人脸特征提取就是针对人脸的某些特征进行的。 人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。
4 特征匹配
这一步就是依据第三步特征提取之后的人脸建模,与数据库中的模型进行匹配,匹配结果为相似度,如下图所示。
难点:
人脸图像在现实世界中的呈现具有高度的可变性。所以人脸识别也是最有挑战性的生物识别方法之一。人脸图像可变的地方包括:
应用:
人脸识别的应用变得越来越广泛,只要跟身份识别相关的未来都有可能使用人脸识别。下面列几个典型的应用场景。
总结:
人脸识别是一个系统性的工程,其中每一步都有不同类型的实现方法,但识别的准确率和达成率依赖于数据库的丰富和准确程度[4]。
人脸识别应用十分广泛,今天我们就门禁识别系统中的人脸识别,来描述一下其痛点。
对于员工来说:
(1)传统识别过程繁琐。对于员工来说,传统的上班入门需要进行登记或者刷卡入户,比较繁琐,而人脸识别不需要携带相应的物件,凭借“刷脸”即可轻松入门。
(2)传统识别出错率高。传统识别依靠安保或者刷卡识别,出错率较高或者不够严谨,无法做到一一对应,影响绩效考勤或者让违规人员进入。
对于管理者:
(1)人工雇佣成本高。需要雇佣大量的安保人员,需要其24小时在岗。同时只要安装了人脸识别系统即可做到开源节流,同时保障安保系统高效运转。
(2)传统识别系统信息化难度低。传统企业应用刷卡或者人工方式来控制进出,对于下一步溯源比较困难,信息化、可视化程度低,很难进行下一步梳理和统计。
人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。目前基于深度学习的人脸识别算法一般采用卷积神经网络( convolution neural network,CNN) 来实现。 发展至今,基于CNN的人脸识别算法在准确率上已经趋于100 % ,并且有越来越多效果很好的网络相续出现。
人脸识别产品已广泛应用于金融、司法、军队、公安、边检、政府、航天、电力、工厂、教育、医疗及众多企事业单位等领域。随着技术的进一步成熟和社会认同度的提高,人脸识别技术将应用在更多的领域。
1、企业、住宅安全和管理。如人脸识别门禁考勤系统,人脸识别防盗门等。
2、电子护照及身份证。中国的电子护照计划公安部一所正在加紧规划和实施。
3、公安、司法和刑侦。如利用人脸识别系统和网络,在全国范围内搜捕逃犯。
4、自助服务。
5、信息安全。如计算机登录、电子政务和电子商务。目前大多数场景中人脸识别都已经投入生产,并且作为企业重要的一部分。
人工智能人脸识别技术是一个相对复杂的研究领域,需要涉及到计算机视觉、机器学习、深度学习等多个方面的知识。因此,与这方面的论文难度也相对较高。
具体来说,人工智能人脸识别技术的论文需要包含以下内容:
这些内容需要研究者具备扎实的计算机视觉和机器学习的理论基础,并具备一定的编程和实验能力。同时,还需要熟悉人脸识别技术的前沿研究动态,并能够对现有的研究进行深入的分析和总结。
综上所述,人工智能人脸识别技术的论文难度相对较高,需要研究者具备较高的理论和实践水平。
简单来说是前期采集人脸图像生成一个特征向量保存下来,然后使用训练好的模型提取摄像头拍下来的图像的特征向量,然后将拿到这个特征向量和保存下来的特征向量进行比对,达到设定的阈值,我们就认为是同一个人。
目前我国排名前列的人脸识别企业主要有旷视科技、商汤科技等专门成立从事人脸识别技术研发应用的创业型公司,老牌的安防及上市企业如海康威视、大华股份、川大智胜、欧比特等,同时还有互联网巨头腾讯、阿里、百度以投资或自有研发团队的形式进入人脸识别领域。
在不同应用领域,人脸识别行业品牌的知名度不一样。按照人脸识别技术的应用维度分析,可以分为政府、企业和个人消费者,其中政府部门一般希望人脸识别技术应用在智能安防领域,应用场景复杂,对准确性的要求较高;个人消费者应用场景复杂性低,但对消费体验要求较高。按照人脸识别技术的供给维度分析,人脸识别技术能够提供的产品主要划分为工程项目、硬件及软件技术。
在个人应用领域,纯粹的软件技术(人脸识别技术)与智能手机及平板电脑等智能终端结合,应用场景简单,主要品牌为旷视科技、商汤科技等初创企业;在企业应用领域,主要是门禁、考勤等产品需求,应用场景最为简单,主要品牌为汉王科技、海康威视等企业;在政府应用领域,人脸识别的项目工程一般应用在公共安全领域(包括出入境管理、智慧城市等领域),此类领域应用场景最复杂,主要企业包括欧比特、海鑫科金、海康威视、大华股份等企业。
发展前景:多方因素驱动,市场规模稳步扩大
随着人脸识别技术不断成熟,市场需求将加速释放,应用场景不断被挖掘。从社保领取到校园门禁,从远程预授信到安检闸机检查,人脸识别正不断打开市场。人脸识别市场热度高涨,其应用场景得到跨越式发展的根本原因在于技术革新。人工智能下,深度学习使人脸识别的精确度超越肉眼级别,极大丰富了人脸识别的应用场景。互联网银行远程开户的刚需将人脸识别带进了金融级应用场景,同时智慧城市建设下,安防等领域对人脸识别的需求逐步扩大;巨头频繁布局人脸识别赋予其更大的应用场景想像空间,同时培养用户“刷脸”习惯以及对技术的认可度,有利于产业进一步发展。多方的推动使得人脸识别应用得到爆发式发展。
随着我国社会经济的稳步发展,对于人脸识别技术的应用需求也将越来越大。此外,随着国内平安城市、智慧城市项目的深入发展,城市监控的高清化进一步得到普及,摄像头数量大规模增长,使得人脸识别在数据采集上的阻碍大大减小,提升了人脸识别的质量与应用领域。预计未来五年人脸识别市场规模将保持20%以上的增长速度,到2024年市场规模达到100亿元左右。
人脸识别是人工智能应用的一个方面,现今已经被应用在很多方面,比如:手机面部解锁、火车站进站检票、超市扫脸付款等。
简单地从商业方面来说人工智能在人脸识别这方面的应用。人脸智能识别技术可以探测到进店的顾客的面容,然后可以追踪到它在这个店铺的行动路径。举个例子,一个顾客进了一家超市,从进入这家超市时,这位顾客在那个货架前停留的时间有多久、购买了哪些商品、哪些商品是拿下来却没有购买的等数据就可以获取。根据顾客的面容商家是可以得知他是新客,还是老顾客、上次他购买了哪些商品,这对于商家调整货物的摆放、对于这位顾客进行商品推荐都是有帮助的。
人脸智能识别技术也可以根据顾客的面容ID来进行商品的推荐,比如服装行业。识别并将面容ID进行存储,将衣服搭配在这个面容ID上就可以形成这个人穿了这样一件衣服的图片然后推送至顾客的手机上,然后在手机上还显示了什么颜色最搭配,这个衣服是如何的适合来刺激顾客进行商品的购买。
人脸智能识别技术在商业方面的应用不仅仅只限于以上提到的方面,还有其他方面的应用。而且人工智能在人脸识别这方面的应用也会越来越成熟,人脸智能识别技术也会更好地服务于各行各业。
当然算,人脸识别称得上是二十一世纪顶尖高科技产物,代替了原来的刷卡,指纹认证,只要你的面部没有发生太大的改变,在人脸识别的时候就是可以顺利通过的,毫无疑问,绝对称得上是人工智能,当之无愧,当然,如果面部发生太大改变,认证将面临失败