人工智能技术的应用?
500
2024-04-26
如果从学习的角度来讲,上大学本科那就是4年。以后再读硕士读研究生就需要更长的时间。
如果说只是工作中需要,可能学比较短的时间,但与我们当代这个社会形势发展来讲,很可能要活到老学到老的,学以致用。
首先明白你学人工智能的目的,是出zd于喜爱,还是觉得这行业有前途以后就干这行。学人工智能课程需要掌握这些技能,Python基础、Python进阶、数据库实战开发、web前端开发、Python爬虫开发、Django框架、数据分析、人工智能。从上面学习的内容来看,前期是以python为核心,重点版学习python相关的内容,因为后期我们需要学习机器学习的内容,机器学习的学习过程中,对于python的使用要求较权高,还有就是深度学习、数据分析、算法模型等内容,课程内容还是很好的,想学,建议参考下四川新华电脑学校
需要必备的知识有:
1、线性代数:如何将研究对象形式化?
2、概率论:如何描述统计规律?
3、数理统计:如何以小见大?
4、最优化理论: 如何找到最优解?
5、信息论:如何定量度量不确定性?
6、形式逻辑:如何实现抽象推理?
7、线性代数:如何将研究对象形式化?人工智能简介:1、人工智能(Artificial Intelligence),英文缩写为AI。人工智能涉及的学科:哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。
学习Python人工智能需要以下基础知识:
1. 编程基础:需要掌握基本的编程概念和语法,理解程序的基本构成和运行原理,掌握函数、变量、条件、循环等语句的使用。
2. 熟悉Python编程语言:Python是一种高级编程语言,拥有简单、易学、易读的特点。需要掌握Python的数据类型、语句结构、函数、模块等基础知识。
3. 数学基础:人工智能的本质是数学,并需要掌握微积分、线性代数、概率论等数学基础知识。
4. 机器学习基础:机器学习是人工智能的核心领域,需要掌握其基本概念、算法和模型,包括分类、聚类、回归等。
5. 深度学习基础:深度学习是机器学习的一个重要分支,需要掌握其基本概念、与传统机器学习的区别和联系。
6. 数据的处理和分析:数据是人工智能应用的重要基础,因此需要掌握数据处理和分析相关的基础知识,包括数据采集、预处理、清理、可视化等。
总之,学习Python人工智能需要具有扎实的计算机科学网络基础,并需要有一定的数学基础,掌握Python编程语言、机器学习和深度学习的基础知识,以及数据处理和分析的能力。
人工智能领域中,最常用的编程语言是 Python。Python 语言简洁易用,功能多样,支持交互式、可解释式性、模块化、动态、可移植和高级的代码,这使得它非常适合用于 AI 开发。Python 还具有丰富的库和框架,如 NumPy、Pandas、TensorFlow 和 PyTorch 等,这些库和框架在数据处理、机器学习、深度学习等领域具有广泛的应用。
除了 Python,其他一些编程语言也可以用于人工智能开发,如 Java、C++、JavaScript 和 R 等。这些编程语言在不同的应用场景和领域有着各自的优势。例如,Java 在企业级应用和大型系统开发中具有较高的市场份额;C++ 可以提供更高的性能和底层操作能力;JavaScript 在 Web 开发和前端技术领域具有广泛的应用;R 语言则在统计分析和数据挖掘领域有着独特的优势。
综上所述,人工智能需要学习的编程语言主要取决于具体的应用场景和需求。对于初学者来说,建议从 Python 开始入手,掌握 Python 语言的基本语法和相关库,再根据具体的项目需求选择其他编程语言进行学习。
作为IT开发人员,根据自己的经验简单的做了一下总结,分了两大部分内容:
一、自然语言处理(NLP)
(1)、基础
1、文本清洗(正则、分词与规范化);
2、中文分词(HMM、trie tree、工具有jieba)
3、文法分析
4、词袋模型(ngram)
5、关键词抽取(tfidf、texttrank)
6、语义相似度(term、score、距离函数)
7、文本的向量化表示(word2vec(skip、gram、glove)、elmo、bert)
8、机器学习(lr、svm、bayesian、fast text、)
9、深度学习(textCNN、textRNN、seq2seq、siamese LSTM、DSSM、attention)
(2)、在实际项目中的应用
1、实体识别(应用:医疗智能、对话机器人)、(技术:CRF、bilstm-CRF、PCNN)、(扩展:知识图谱、图数据库)
2、query相似变换(应用:sug、纠错改写)、(技术:elasticsearch 建库索引)
3、文本分类(应用:情感识别、文章类型、意图识别(样本爬取)、语种检测)
4、序列标注(机器翻译、词性标注)
5、文本生成(应用:诗歌对联、摘要生成)、(技术:VAE、GAN)
6、聊天机器人(案例:百度anyQ)
二、图像视觉处理(计算机视觉)
(1)、主要应用
1、主要应用:无人驾驶、医疗影像诊断、安防、人脸识别、视频内容理解、图像分类、图像分割、目标检测、目标跟踪。
2、OpenCV
3、图像分类(CNN、AlexNet、LeNet、VGG、ResNet、Fast-RCNN)
4、图像检索(距离度量与检索、图像特征抽取、LSH近邻检索算法)
上面两大内容中要学习的内容分为三个阶段
第一阶段:人工智能基础。包括编程基础:机器学习深度学习框架例如tensorflow/pytorch;数学基础:高等数学,线性代数,概率论,统计学知识;机器学习基础:决策树,逻辑回归,聚类算法,支持向量机,集成学习;深度学习基础:反向传播,链式求导,卷积神技网络,循环神经网络等。
第二阶段:算法在NLP领域的实践应用。基础的NLP任务:词法分析,包括:分词,词性标注等;句法依存分析;语义表示与语言模型;命名实体识别;文本分类;文本生成;机器翻译;信息检索等。
第三阶段:算法在CV领域的实践应用。CV图像处理的基础,opencv的框架;同时也是基于cv领域应用最广的几种任务:图像分类;语义分割;图像目标检测;目标跟踪;序列分析。
人工智能(AI)是一门交叉学科,涵盖了计算机科学、心理学、哲学等多学科的知识。在某种程度上,人工智能可以被认为是一种应用科学,它试图通过开发和应用人工智能技术来解决现实世界中的问题。
在更具体的学习层面上,人工智能可以被归类为机器学习、数据科学、计算机视觉、自然语言处理等子领域。这些子领域分别关注于人工智能在特定领域的应用和实践,如机器学习用于预测股票市场、数据科学用于分析大数据、计算机视觉用于图像识别和自动驾驶、自然语言处理用于语音识别和机器翻译等。
Linux是一个操作系统,你只要学习基本的操作方法就可以,人工智能专业的另外学习
很理解题主!
作为当年的计算机专业学生,也要学习电子电路,看见电路就头痛得要死,做得实验永远是抄的!
至今无法理解为什么要学习这门课程,因为实际工作中,真的毫无用处。
后来想了想,应该是为了让大家掌握基础的原理,多掌握一些知识也没坏处,毕竟硬件都离不开电路。
我大致观察了一下,现在大多数人工智能专业的课表,基本都会包含电路这门课程,例如东南大学和电子科技大学的:
可以看出,在现在的人工智能本科专业里,60%就是计算机专业的课程,10%是基础深度扩展,剩下30%才是人工智能领域的专业知识,课程肯定都是综合性的,不可能一个专业就只学这方面的内容。
现在大学都要讲究全面发展了,计算机专业要学的内容也是这样,什么都会涉及,而且人工智能又人工智能是包括十分广泛的科学,要了解得更多更广的相关知识,才能进一步了解人工智能,我还是能理解大学这样组合课程的意图的。
先学几种编程语言C/C++,Java,Python等,然后数据结构、算法。还有高等数学。当你把这些学完后,就会发现离人工智能还远着呢。 不要听各路培训班瞎吹。 真相就是,如果零基础,什么人工智能、大数据,都是不存在的。 建议就是,先把本科里计算机专业那些专业课学了,之后再选方向进一步发展。 搞人工智能是要高学历的,,,,