人工智能 筛选算法?

admin 0 2024-05-31

一、人工智能 筛选算法?

人工智能中的筛选算法是指用于从大量数据或信息中筛选出符合特定条件或标准的项或样本的算法。这些算法可以帮助人工智能系统自动地、高效地进行数据筛选和过滤,从而减少人工操作和提高工作效率。

以下是几种常见的人工智能筛选算法:

逻辑回归(Logistic Regression):逻辑回归是一种用于分类问题的线性模型。它通过将输入数据映射到一个概率值来进行分类,然后根据设定的阈值进行筛选。

决策树(Decision Tree):决策树是一种基于树状结构的分类算法。它通过一系列的判断条件对数据进行分割,最终将数据分为不同的类别或标签。

随机森林(Random Forest):随机森林是一种集成学习算法,它由多个决策树组成。每个决策树都对数据进行独立的判断和分类,最后通过投票或取平均值的方式得出最终结果。

支持向量机(Support Vector Machine,SVM):支持向量机是一种用于分类和回归问题的监督学习算法。它通过在特征空间中找到一个最优的超平面来进行分类,从而实现数据的筛选和分类。

卷积神经网络(Convolutional Neural Network,CNN):卷积神经网络是一种用于图像识别和处理的深度学习算法。它通过多层卷积和池化操作来提取图像的特征,并通过全连接层进行分类和筛选。

这些筛选算法在不同的应用场景中具有各自的优势和适用性。根据具体的需求和数据特点,选择合适的筛选算法可以提高人工智能系统的准确性和效率。

二、人工智能调度算法?

调度算法是指:根据系统的资源分配策略所规定的资源分配算法,如任务A在执行完后,选择哪个任务来执行,使得某个因素(如进程总执行时间,或者磁盘寻道时间等)最小。对于不同的系统目标,通常采用不同的调度算法。

三、先进人工智能算法是什么算法?

在人工智能领域里,算法(Algorithm)是指如何解决一类问题的明确规范。算法可以执行计算,数据处理和自动推理任务,基本上就是可规量化的计算方式。算法主要作用是用于训练模型的。其中,算法具有下面4个特征:可行性、确定性、有穷性和拥有足够的情报。

然后算法的常有思路有一下几种:列举法、归纳法、递推法、递归法、减半递推技术和回溯法。

四、slam算法是人工智能算法吗?

是的,slam算法是做无人驾驶的,属于人工智能算法范畴

五、人工智能是算法吗?

人工智能不是算法,而是一种技术。

当然,人工智能里离不开各种各样的算法。

六、人工智能a*算法是什么?

A*算法是一种有序搜索算法,其特点在于对估价函数的定义上。

这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。

七、人工智能三大算法?

1. 决策树

根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

2. 随机森林

在源数据中随机选取数据,组成几个子集;

S 矩阵是源数据,有 1-N 条数据,A B C 是feature,最后一列C是类别;

由 S 随机生成 M 个子矩阵。

3. 马尔可夫

Markov Chains 由 state 和 transitions 组成;

例如,根据这一句话 ‘the quick brown fox jumps over the lazy dog’,要得到 markov chain;

步骤,先给每一个单词设定成一个状态,然后计算状态间转换的概率;

这是一句话计算出来的概率,当你用大量文本去做统计的时候,会得到更大的状态转移矩阵,例如 the 后面可以连接的单词,及相应的概率;

生活中,键盘输入法的备选结果也是一样的原理,模型会更高级

八、蛮力法经典算法?

蛮力法是一种简单直接地解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。也可以用“just do it!”来描述蛮力法的策略。一般来说蛮力策略也常常是最容易实现的方法。优缺点

虽然巧妙和高效的算法很少来自于蛮力法,但它在算法设计策略中仍然具有重要地位.

1.蛮力法适应能力强,是唯一一种几乎什么问题都能解决的一般性方法。

2.蛮力法一般容易实现,在问题规模不大的情况下,蛮力法能够快速给出一种可接受速度下的求解方法.

3.虽然通常情况下蛮力法效率很低,但可以作为衡量同类问题更高效算法的准绳。

九、力扣经典算法?

一、两三四数之和

        两数之和。哈希表解决。 1. 两数之和 - 力扣(LeetCode)

        三数之和,找出所有和为 0 且不重复的三元组。先排序,用for循环,双指针,while。15. 三数之和 - 力扣(LeetCode)

        最接近的三数之和。与target最接近,同上,if条件不同而已。16. 最接近的三数之和 - 力扣(LeetCode)

        四数之和。先排序,用双for,双指针,while。18. 四数之和 - 力扣(LeetCode)

十、控制算法最经典的3个算法?

3个算法,比例控制算法,微分控制算法,积分控制算法。

比例控制算法

我们先说PID中最简单的比例控制,抛开其他两个不谈。还是用一个经典的例子吧。假设我有一个水缸,最终的控制目的是要保证水缸里的水位永远的维持在1米的高度。假设初试时刻,水缸里的水位是0.2米,那么当前时刻的水位和目标水位之间是存在一个误差的error,且error为0.8.这个时候,假设旁边站着一个人,这个人通过往缸里加水的方式来控制水位。如果单纯的用比例控制算法,就是指加入的水量u和误差error是成正比的。即

u=kp*error

假设kp取0.5,

那么t=1时(表示第1次加水,也就是第一次对系统施加控制),那么u=0.5*0.8=0.4,所以这一次加入的水量会使水位在0.2的基础上上升0.4,达到0.6.

接着,t=2时刻(第2次施加控制),当前水位是0.6,所以error是0.4。u=0.5*0.4=0.2,会使水位再次上升0.2,达到0.8.

如此这么循环下去,就是比例控制算法的运行方法。

可以看到,最终水位会达到我们需要的1米。

但是,单单的比例控制存在着一些不足,其中一点就是 –稳态误差!(我也是看了很多,并且想了好久才想通什么是稳态误差以及为什么有稳态误差)。

像上述的例子,根据kp取值不同,系统最后都会达到1米,不会有稳态误差。但是,考虑另外一种情况,假设这个水缸在加水的过程中,存在漏水的情况,假设每次加水的过程,都会漏掉0.1米高度的水。仍然假设kp取0.5,那么会存在着某种情况,假设经过几次加水,水缸中的水位到0.8时,水位将不会再变换!!!因为,水位为0.8,则误差error=0.2. 所以每次往水缸中加水的量为u=0.5*0.2=0.1.同时,每次加水缸里又会流出去0.1米的水!!!加入的水和流出的水相抵消,水位将不再变化!!

也就是说,我的目标是1米,但是最后系统达到0.8米的水位就不在变化了,且系统已经达到稳定。由此产生的误差就是稳态误差了。

(在实际情况中,这种类似水缸漏水的情况往往更加常见,比如控制汽车运动,摩擦阻力就相当于是“漏水”,控制机械臂、无人机的飞行,各类阻力和消耗都可以理解为本例中的“漏水”)

所以,单独的比例控制,在很多时候并不能满足要求。

积分控制算法

还是用上面的例子,如果仅仅用比例,可以发现存在暂态误差,最后的水位就卡在0.8了。于是,在控制中,我们再引入一个分量,该分量和误差的积分是正比关系。所以,比例+积分控制算法为:

u=kp*error+ ki∗∫∗∫error

还是用上面的例子来说明,第一次的误差error是0.8,第二次的误差是0.4,至此,误差的积分(离散情况下积分其实就是做累加),∫∫error=0.8+0.4=1.2. 这个时候的控制量,除了比例的那一部分,还有一部分就是一个系数ki乘以这个积分项。由于这个积分项会将前面若干次的误差进行累计,所以可以很好的消除稳态误差(假设在仅有比例项的情况下,系统卡在稳态误差了,即上例中的0.8,由于加入了积分项的存在,会让输入增大,从而使得水缸的水位可以大于0.8,渐渐到达目标的1.0.)这就是积分项的作用。

3,微分控制算法

换一个另外的例子,考虑刹车情况。平稳的驾驶车辆,当发现前面有红灯时,为了使得行车平稳,基本上提前几十米就放松油门并踩刹车了。当车辆离停车线非常近的时候,则使劲踩刹车,使车辆停下来。整个过程可以看做一个加入微分的控制策略。

微分,说白了在离散情况下,就是error的差值,就是t时刻和t-1时刻error的差,即u=kd*(error(t)-error(t-1)),其中的kd是一个系数项。可以看到,在刹车过程中,因为error是越来越小的,所以这个微分控制项一定是负数,在控制中加入一个负数项

行业分析报告的报告用途?
人工智能会有意识吗?
相关文章