人工智能技术的应用?
500
2024-04-26
1、是从人工知识表达到大数据驱动的知识学习技术。
2、是从分类型处理的多媒体数据转向跨媒体的认知、学习、推理,这里讲的“媒体”不是新闻媒体,而是界面或者环境。
3、是从追求智能机器到高水平的人机、脑机相互协同和融合。
4、是从聚焦个体智能到基于互联网和大数据的群体智能,它可以把很多人的智能集聚融合起来变成群体智能。
5、是从拟人化的机器人转向更加广阔的智能自主系统,比如智能工厂、智能无人机系统等。
随着智能时代的到来,数据成为重要的生产要素。人工智能、云计算、物联网、大数据等新技术推动包括工业、农业、服务业等许多行业、产业进行大规模的数字化变革,逐渐形成以数据+智能为中心的新型业务,推动服务化延伸、网络化协同、智能化生产和个性化定制等新的变化。
人工智能可以采集各种类型的数据,包括结构化数据(如数据库中的表格数据)、非结构化数据(如文本、图像、音频、视频等)、传感器数据(如温度、湿度、压力等)、社交媒体数据(如用户评论、帖子等)、日志数据(如网络日志、系统日志等)等。这些数据可以用于训练和优化人工智能模型,从而实现自动化决策、预测分析、图像识别、语音识别、自然语言处理等各种智能应用。
人工智能(Artificial Intelligence)和大数据(Big Data)是两个独立但密切相关的领域。它们并没有一个统一的称呼来表示二者的结合,但可以使用"人工智能与大数据"或者"人工智能与大数据分析"来表示它们的联合应用。
"人工智能与大数据"指的是将人工智能技术与大数据处理和分析相结合的应用场景。人工智能通过机器学习、深度学习和自然语言处理等算法和技术,能够从大数据中提取、识别和分析有用的信息,并用于数据预测、决策支持和智能推荐等方面。
在人工智能和大数据的结合中,大数据为人工智能提供了大量的训练数据,使得人工智能模型能够更好地进行学习和训练;而人工智能技术则能够对大数据进行高效的分析和利用,发现其中隐藏的模式和规律。
这种结合不仅提供了更准确、更智能的数据分析和决策能力,也促进了人工智能和大数据领域的相互发展和进步。
1.史蒂芬·霍金
全面化人工智能可能意味着人类的终结……机器可以自行启动,并且自动对自身进行重新设计,速率也会越来越快。受到漫长的生物进化历程的限制,人类无法与之竞争,终将被取代。
2.克劳德·香农
我设想在未来,我们可能就相当于机器人的宠物狗狗,到那时我也会支持机器人的。
3.拉里·佩奇
人工智能将是谷歌的最终版本。它将成为终极搜索引擎,可以理解网络上的一切信息。它会准确地理解你想要什么,给你你需要的东西。我们现在还远远没有做到这一点。然而,我们能够逐渐接近,我们目前正在为此努力。
4.Elon Musk
人工智能(我指的不是狭隘的AI)的发展速度之快令人难以置信。除非你对Deepmind这样的项目有直接的接触,否则你不知道它的发展速度有多快它以接近指数的速度发展。在未来5年的时间里,很有可能发生重大的危险事件。最长也在10年之内。
5.Nick Bilton
“人工智能带来的巨变将会迅速扩大,它将越来越可怕,甚至带来灾难性结果。”想象一下这样一幅场景一个原本是用来治疗癌症的医疗机器人最终得出这样的结论:消灭癌症最好的方法就是消灭那些基因里就易于受癌症攻击的人类。
6.James Barrat
我不想吓你,但我和很多人聊过,他们在人工智能领域都有很高的地位,但他们都准备了一些紧急方案,一旦发生不可控的事故,他们可以用这些方式退出。
7.埃隆·马斯克
我越来越倾向于认为,应该在国家和国际层面上进行监管,以确保我们不会做出非常愚蠢的事情。我的意思是说对于人工智能的研究就仿佛是在召唤一个恶魔。
8.格雷·斯科特
问题所在是,我们什么时候才能起草出一份人工智能法案?这一法案将包括什么?这将由谁来决定呢?
9.克劳斯·施瓦布
我们必须既团结一致又独立地解决由人工智能和生物技术前沿研究而带来的道德伦理问题,这将可以显著地延长人类寿命,增强记忆力并且对新生儿进行有益地影响。
10.吉尼·罗曼提
有些人把这种技术称之为“人工智能”,但实际情况是这种技术将增强我们人类的能力。因此,我认为,我们将增强人类的智能,而非“人工”的智能。
11.杰玛·伟兰
我对于人工智能的忧虑多于兴趣事实上这两种态度本身就相差不多。事情会在头脑中变得清晰,你会被欺骗,你会相信一些你平常不会相信的事情。一个由机器人来运作的世界似乎不再是完全不现实的幻想了。这有点令人不寒而栗。
12.格雷·斯科特
谈起人工智能就不得不谈谈“终结者”。我真的觉得这不现实。我不认为拥有了超人智能的人工智能系统会变得暴力。我不认为这将会破坏人类的文化。
13.彼得·戴曼迪斯
如果一国政府对无人机、干细胞或人工智能技术进行管制,禁止使用,那就意味着相关的研发和生产会转移到别的国家进行。
14.杰夫·霍金斯
人工智能的关键性问题是其表现形式。
15.科林·安格尔
观察全社会将如何对待人工智能技术将会很有趣,这一技术无疑会很酷。
16.埃利德·尤德考斯基
任何能带来优于人类智能的东西,(其形式可能为人工智能,人脑-计算机交互界面,基于神经科学的人类智能提升),都会在改变世界的竞赛中占据领先地位。再没有什么能与此相提并论。
17.黛安·艾克曼
人工智能正在快速成长,机器人亦如此,它们的面部表情可以激起人们的同感,让你的镜像神经元产生震颤。
18.Sybil Sage
电视中,人们只要叫一声Alexa,她就亮了起来。她总是处于待命状态,永远不会说,“不行……”简直是完美的女人。
19.艾伦·凯
有些人担心人工智能会让人类觉得自卑,但是实际上,即使是看到一朵花,我们也应该或多或少感到一些自愧不如。
20.雷蒙德·库茨魏尔
人工智能将在2029年左右达到人类智力的水平。再进一步,比如说,到2045年,我们将会把智能技术,人类文明所创造的生物机器智能的能力扩大10亿倍。
人工智能大数据时代风口主要是智能优化、智能控制、智能机器人、智能大数据分析等。
智能优化方面,针对不同的实际问题,可利用机器学习、数据挖掘技术等来自动调整系统的参数,以达到性能的优化。
智能控制方面,利用机器学习算法,替代传统的控制策略,实现自动化的控制操作,如机器人行走等。
智能机器人方面,利用深度学习、图像识别等技术,实现机器人的自主行走、自动清扫等功能。
最后,智能大数据分析方面,利用机器学习技术处理大量数据,提取出有用的信息,来支撑业务决策和决策支持。
传感器是一种监测装置,能感受到被监测对象的信息,并能将其按一定规律变换成为电信号或其他形式予以输出,以完成信息的记录、传输、存储、显示和控制等,它具有微型化、数字化、智能化、多功能化、系统化、网络化等特点,从本质上讲传感器是一种收集数据信息的方式。
AI处理数据主要是通过数据挖掘和数据分析。
一、数据挖掘(Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(Knowledge-Discovery in Databases,简称KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
2利用数据挖掘进行数据处理常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。
业务积累,这是最有效的数据,比如网易云反垃圾系统,就基于网易十多年反垃圾经验积累的特征库训练的,准确率就很高。现在大家都有大数据应用的意识,了解要分析哪些数据,用好桑文锋总答案中说的埋点,就是很好的收集方法。
数据交易,现在我国有一些数据交易所,但数据交易市场还在探索中,不是很成熟。大平台建设生态开放的数据。
大数据和人工智能虽然关注点并不相同,但是却有密切的联系,一方面人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。
在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。