人工智能技术的应用?
500
2024-04-26
Python可以在整个流程中提供必要有效的处理工具,每一个步骤都有专门的工具库,对此我们会在下面做详细介绍。Python包含许多强大的统计学和数学工具,比如Pandas, Numpy, Matplotlib, SciPy, scikit-learn等等,另外还包括先进的深度学习工具,比如Tensorflow, PyBrain等等。
此外,Python被认作是人工智能和机器学习的基础语言,而数据科学和人工智能又有着密切的交集。因此,Python被视为数据科学领域应用最广泛的语言并不会令人感到意外。
人工智能和量子计算,由于量子计算不可避免的兴起,人工智能也将变得更聪明、更快、更灵活、更像人类。
知识是人类智能的基础,人类在从事阶级斗争、生产斗争和科学试验等社会实践活动中,其智能活动过程主要是一个获取知识并运用知识的过程。
人工智能是一门研究用计算机来模仿和执行人脑的某些智力功能的交叉学科,所以人工智能问题的求解也是以知识为基础的。
人工智能的基础是什么?知识、信息和数据
知识图谱
如何从现实世界中获取知识、如何将已获得的知识以计算机内部代码的形式加以合理的表示以便于存储,以及如何运用这些知识进行推理以解决实际的问题,即知识的获取、知识的表示和运用知识进行推理是人工智能学科要研究的3个主要问题。
在人们的日常生活及社会活动中,“知识”是常用的一个术语。例如,人们常说“我们要掌握现代科学知识”,“掌握的知识越多,你的机会就越多”等。人们所涉及的知识也是十分广泛的,例如,有的知识是多数人所熟悉的普通知识,而有的知识只是有关专家才掌握的专门领域知识。那么,到底什么是知识?知识有哪些特性?它与通常所说的信息有什么区别和联系?
现实世界中每时每刻都产生着大量的信息,但信息是需要用一定的形式表示出来才能被记载和传递的。尤其是使用计算机来进行信息的存储及处理时,更需要用一组符号及其组合进行表示。像这样用一组符号及其组合表示的信息称为数据。
数据与信息是两个密切相关的概念。数据是记录信息的符号,是信息的载体和表示。信息是对数据的解释,是数据在特定场合下的具体含义。只有把两者密切地结合起来,才能实现对现实世界中某一具体事物的描述。
人工智能的基础是什么?知识、信息和数据
三者关系图
另外,数据和信息又是两个不同的概念,相同的数据在不同的环境下表示不同的含义,蕴涵不同的信息。比如,“100”是一个数据,它可能表示“100元钱”,也可表示“100个人”,若对于学生的考试成绩来说,可能表示“100分”。同样,相同的信息也可以用不同的数据表示出来。比如,地下工作者为了传达情报信息,可以用一首诗词的每一句的第一个字组成一句话,或诗的斜对角线上的字组成的一句话来传达信息,也可能会用一个代码或数字来表示同一信息。
正如上述,现实生活中,信息是要以数据的形式来表达和传递的,数据中蕴涵着信息,然而,并不是所有的数据中都蕴涵着信息,而是只有那些有格式的数据才有意义。对数据中的信息的理解也是主观的、因人而异的,是以增加知识为目的的。
比如,你看到0571-88911818这样的数字,你可能会根据自己已有的知识猜测到它是一个电话号码,但不知道它是哪个城市的电话号码,但如果你通过一些方法确定0571是杭州市的区号后,以后再碰到相同格式的数据时,你就会知道它代表杭州市的一个电话号码,实际上你的知识也就增加了。不同格式的数据蕴涵的信息量也不一样,比如,图像数据所蕴涵的信息量就大,而文本数据所蕴涵的信息量就少。
人工智能的基础是什么?知识、信息和数据
数据处理
信息在人类生活中占有十分重要的地位,但是,只有把有关的信息关联到一起的时候,它才有实际的意义。一般把有关信息关联在一起所形成的信息结构称为知识。知识是人们在长期的生活及社会实践、科学研究及实验中积累起来的对客观世界的认识与经验,人们把实践中获得的信息关联在一起,就获得了知识。
终上所述,知识、信息和数据是3个层次的概念。有格式的数据经过处理、解释过程会形成信息,而把有关的信息关联再一起,经过处理就形成了知识。知识是用信息表达的,信息则是用数据表达的,这种层次不仅反映了数据、信息和知识的因果关系,也反映了它们不同的抽象程度。人类在社会实践过程中,其主要的智能活动就是获取知识,并运用知识解决生活中遇到的各种问题。
首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析
其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累;
然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少;
人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。
数学方面技能的掌握取决于研究深度。人工智能并不依赖与任何编程语言,这意味着开发人员需要掌握处理数据相关的其他技术,其中包括了算法,代数和微积分。具备这些技能的重要性显而易见。同时我们还需要了解人类对于自然语言处理的思维过程,其中的上下文联系,隐含意图以及所描述事物间的联系等等。这需要深入洞察人类的思维过程。
人工智能的基础科学主要包括计算机科学、数学、认知科学、神经科学和逻辑学。
1. **计算机科学**:提供了编程语言、算法、数据结构和软件工程等基础知识,这些都是实现人工智能应用的核心技术。
2. **数学**:特别是统计学、概率论、线性代数、微积分和优化理论等,为机器学习算法提供了数学模型和分析工具。
3. **认知科学**:研究人类思维和智力的学科,它结合心理学、哲学、语言学等领域,为人工智能提供了理解和模拟人类智能的理论基础。
4. **神经科学**:研究大脑和神经系统的科学,通过了解大脑如何处理信息和学习,人工智能可以借鉴这些原理来设计和改进算法。
5. **逻辑学**:是研究有效推理的学科,为人工智能提供了形式化表示知识和推理过程的工具,特别是在自动推理和专家系统领域。
除此之外,人工智能还涉及到诸如控制论、信息论、哲学等其他学科,它们在不同程度上对人工智能的发展和应用都有影响。随着技术的不断进步,人工智能领域还在不断地融合新的学科和理论。
包括哲学,数学,经济学,神经科学,心理学,计算机工程,控制论,语言学等等多门学科。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
ai的基础应该是数学,把现在已知的,甚至未知的数学理解、探索、融汇贯通达到先有“能”,有计算与判断的能力;再有“智”,有理性、感性去分析判断问题的智力。
人工智能对物理知识的需求应该是较少的,他对语言学、哲学、心理学、社会学的需求都可能比物理学多
《人工智能基础教程》是2011年清华大学出版社出版的图书,作者是朱福喜。该书系统地阐述了人工智能的基本原理、实现技术及其应用,全面地反映了国内外人工智能研究领域的最新进展和发展方向。
《人工智能基础教程(第2版)》共18章,分为4个部分,第1部分是搜索与问题求解,用8章的篇幅系统地叙述了人工智能中各种搜索方法求解的原理和方法,内容包括状态空间和传统的图搜索算法、和声算法、禁忌搜索算法、遗传算法、免疫算法、粒子群算法、蚁群算法和agent技术等;
第2部分为知识与推理,用4章的篇幅讨论各种知识表示和处理技术、各种典型的推理技术,还包括非经典逻辑推理技术和非协调逻辑推理技术;
第3部分为学习与发现,用3章的篇幅讨论传统的机器学习算法、神经网络学习算法、数据挖掘和知识发现技术;
第4部分为领域应用,用2章分别讨论专家系统开发技术和自然语言处理原理和方法。
这些内容能够使读者对人工智能的基本概念和人工智能系统的构造方法有一个比较清楚的认识,对人工智能研究领域里的最新成果有所了解。
《人工智能基础教程(第2版)》强调先进性、实用性和可读性,可作为计算机、信息处理、自动化和电信等it相关专业的高年级本科生和研究生学习人工智能的教材,也可供从事计算机科学研究、开发和应用的教学和科研人员参考。
“人工智能+教育”提供的教育服务充分尊重师生人性,能依据教师、学生的特征和需求,提供精细、富有实效的个性化教育服务。
比如,人工智能技术能够根据学习者的学习特征(认知水平、学习风格、兴趣爱好、学习目标等),如同“订餐式”一样,为每一个学习者提供不同的个性化学习服务。格物斯坦认为:当学习者的学习特征不明确或效果不明显时,人工智能技术还可以通过智能算法或数据分析,基于各类知识库进行推理,即时反馈,从而不断矫正服务不足,提高个性化服务水平。
这,也同样适用于教师。