什么是量子计算?
500
2024-04-26
光电子计算机主要由以下3大优点:
1)光子计算机并行处理能力强,因而具有更高的运算速度。
2)与电子计算机相比,光子计算机具有超大规模的信息存储容 量。
3其是一种节能型产品。
在微观尺度上,一个量子比特可以同时处于多个状态,而不像传统计算机中的比特只能处于0和1中的一种状态。
这样的一些特性,让量子计算机的计算能力能远超传统计算机。美国谷歌公司等机构在2015年宣布,它们的“D波”(D-Wave)量子模拟机对某些问题的求解速度已达到传统计算机的1亿倍。虽然它并不被认为是真正的量子计算机,但量子计算的巨大潜力已经显露。
量子计算需要克服环境噪声、比特错误和实现可容错的普适量子纠错等一系列难题,真正量子计算机研发挑战巨大。
为加速进入量子计算机阵营,各国政府纷纷加大投入。欧盟在2016年宣布投入10亿欧元支持量子计算研究,美国仅政府的投资即达每年3.5亿美元。中国也在大力投入,目前正在筹建量子信息国家实验室,一期总投资约70亿元。
如果“量子霸权”实现,人类计算能力将迎来飞跃,接下来就会是在多个领域的推广。一些行业巨头已经盯上了量子计算未来应用:阿里巴巴建立了量子计算实验室;中科院与阿里云合作发布量子计算云平台;IBM也在去年宣布计划建立业界首个商用通用量子计算平台IBM Q,还与摩根大通等公司合作计划在2021年前推出首个在金融领域的量子计算应用。
传统计算机要100年才能的难题,量子计算机可能仅需1秒,如此“洪荒之力”、酷炫前景各国岂能袖手旁观?
去年底,美国IBM公司宣布推出全球首款50量子比特的量子计算原型机,量子计算领域的竞争进入关键阶段。
聪者听于无声,明者见于未形。
当魔幻般的理论在现实中推动进步,各国的科研实力体现无疑。
在IBM公司宣布成果的半年前,中国科学家已发布世界首台超越早期传统计算机的光量子计算机,实现10个超导量子比特纠缠,在操纵质量上也是全球领先。
从个位数到几十量子比特的进展,各国你追我赶,这到底是为什么?
从1970年到2005年,正如摩尔定律预测的一样,每18个月集成电路上可容纳的元器件数目约增加一倍,计算机的性能也相应提升近一倍。但2005年后这种趋势就开始放缓,极其微小的集成电路面临散热等问题考验。
没有出来了
光子计算机和传统硅芯片计算机的差异在于用光子来代替电子,进行运算和存储。它用不同波长的光来代表不同的数据,可快速完成复杂的计算工作。然而要想造出光子计算机,需要开发出可用一条光束控制另一条光束变化的光学晶体管。现有的光学晶体管庞大而笨拙,用其造成台式电脑,将有一辆汽车那么大。因此,短期内光子计算机达到实用很困难
目前没有真正意义上的量子计算机,理想的量子计算机是利用量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。光子计算机是以光子作为传递信息的载体,光互连代替导线互连,以光硬件代替电子硬件,以光运算代替电运算,利用激光来传送信号,并由光导纤维与各种光学元件等构成集成光路。已经存在光子计算机了。量子计算机强调的是它的数据处理方式即通过量子力学规律处理量子信息的,而光子计算机强调的是它的信息传输方式即通过光子进行传输。因为它们之间有相互包含的可能,所以无法比较两者性能,但它们都比现在的电子计算机先进很多。
5月 3日,科技界迎来了一个振奋人心的消息:世界上第一台超越早期经典计算机的光量子计算机在中国诞生!这标志着我国的量子计算机研究领域已迈入世界一流水平行列。据悉,该光量子计算机是由中科大、中国科学院-阿里巴巴量子计算实验室、浙江大学、中科院物理所等协同完成参与研发的,是货真价实的“中国造”。
量子计算机是指利用量子相干叠加原理,理论上具有超快的并行计算和模拟能力的计算机。随着可操纵的粒子数的增加,量子计算机的计算能力呈指数增长,可以为经典计算机无法解决的大规模计算难题提供有效解决方案,具有巨大的发展潜力。一台操纵50个微观粒子的量子计算机,对一些特定问题的处理能力甚至比超级计算机更强。如果现在经典计算机的速度是自行车,那量子计算机的速度就好比飞机。
在光学体系上,该研究团队在2016年已实现国际最高水平的十光子纠缠操纵。今年,在这一基础上,又利用我国自主研发的高品质量子点单光子源构建了世界首台在性能上能够超越早期经典计算机的单光子量子计算机。最新实验测试表明,该原型机的“玻色取样”速度比国际同行之前所有类似的实验加快至少24000倍,比人类历史上第一台电子管计算机(ENIAC)和第一台晶体管计算机(TRADIC)运行速度快10-100倍。
以前,量子计算速度比经典计算机快还只是停留在理论中,而该台原型机将这一理论变成现实迈出了坚实的第一步,把量子计算机真正推向和经典计算机竞争的擂台。这是历史上第一台超越早期经典计算机量子模拟机,为最终实现超越经典计算能力的量子计算这一国际学术界称之为“量子称霸”的目标奠定了坚实的基础。
在超导体系,该研究团队自主研发了10比特超导量子线路样品,通过高精度脉冲控制和全局纠缠操作,成功实现了目前世界上最大数目的超导量子比特的多体纯纠缠,并通过层析测量方法完整地刻画了10比特量子态。这一成果打破了美国之前保持的9个量子比特操纵的记录,形成了一个完整的超导计算机的系统,使我国在超导体系量子计算机研究领域也进入世界一流水平行列。