大数据的特点主要包括哪些?
500
2024-04-26
SAS的OLAP解决方案支持三种不同类型的OLAP方式,即MOLAP,ROLAP和HOLAP。
三种方式的结合使用,可以让IT人员根据不同的数据环境,建立相应的数据存储方式。从查询速度考虑,可以使用MOLAP,从存放大量数据角度考虑,使用ROLAP,而HOLAP更是结合前两者的优点,产生一个更加灵活的方式。在HOLAP方式下存放的数据,可以是SAS的数据集,其它数据库的数据表,MDDB数据,而且数据可以分布在不同类型的计算机中,使IT人员可以更方便地组织数据。数据仓库十大的主题模型如下
高层模型:考虑所有上层主题,主题之间的关系
中层模型:细化 上层主题 数据项
物理模型:基于性能,存储,平台特点,数据合并,分区设计
维度建模(Ralph Kimball 拉尔夫·金博尔)提出 (当前最主流的模型)
星型:所有维表直接连接到事实表
雪花型: 当有一个或多个维表没有直接连接到事实表上,而是通过其他维表连接到事实表上
如果对关系型数据库比较熟悉,建议用greenplum,这个相当于自动分库分表的postgresql,做olap很好用
天幕的搭建没有固定样式,可根据场地、条件、天气、以及个人喜好进行选择。
有树木的地方很容易扎,只需要把绳子拉紧,用人字顶的拉法,留出排水口的位置就可以了。
如果没有树木,有栏杆都很好扎天幕,依靠栏杆拉绳子,稍微松一点绳子,用天幕杆撑平整天幕,把绳子调节拉紧就好。
如果没有带天幕杆,在空旷的地方也可以扎天幕,把拉袢绳子结好,天幕抖开放平在需要拉天幕的位置,绳子放松量暂时用地丁顺拉袢方向固定,然后用比较直的树枝在你想支撑的地方撑起来天幕,继续调节绳子拉紧重新打地丁。
沙滩扎天幕,撑杆很容易插到沙里,使天幕松动,可以使用矿泉水瓶把杆插在瓶子里再用,如果有纸板或者泡沫板就最理想了,撑杆下面的沙子先浇点水再用,沙子就比较紧致。沙滩使用地丁可以用烧烤叉的杆,把叉子用脚踩掉,有把的长杆方便拔插,叉子在坚硬的地方也可以做为地丁使用
只有拉平伸紧致的天幕,才可以抗大风暴雨,高矮形状的天幕方便排水,要点是:绳子一定要拉紧,排水一定要留出。不能拉成一块平面,那样下雨很快兜水倒塌。
高层整理仓库数据,数字笔记,人员运行,另外还包括机器操作等数据,也就是查看的意思。
绝对有钱途, 我推荐过两个大学毕业生,做了2,3年月薪都7-8k,如果英语不错,绝对上万
数据仓库最吃钱了,许多都是有钱的大公司钱没地花,大部分的数据仓库在投入前3年都没有多大的ROI,知道正在开始使用在markting, CRM才会产生更多revenue,但对于基本dashboard,还有作为stratedgy的数据基础。
没有数据仓库大企业势必会失去一些竞争优势,特别是前瞻。
大数据主要有三个特点:实时、多样、量大、价值。大数据不仅量大,对于数据的处理也成为了最基本的配置。大数据还能整合各种各样的数据类型,无论是结构化数据还是非结构化数据都能够进行处理。
在这个时代,数据依然是最重要的,如何在利用的时候控制好数据,是对一个企业的考验。数据在生活中是无处不在的,手机产生的记录、移动互联网产生的数据、取款时产生的数据、购物时产生的数据、行李从一个城市到另外一个城市产生的数据等。就算一个小小的店铺,卖出一瓶饮料,也会产生数据,而数据就记录着这个世界的存在与变化。
当某个企业的数据量巨大、资产非常重要时,就需要对它进行管理控制。如今数据已经成为了企业的资产。在以前,数据被人们看作是附属物,而不是资产。只要企业进行交易就会产生这些附属物,而现在发现这些交易的数据信息中蕴含着用户的需求,成千上万条信息积累下来,就能够准确的知道用户的需求,为用户这几新的产品,在营销上就产生了新的价值。所以,数据就成为了企业的资产,需要被管理和控制起来。
近几年,数据的控制管理工具发展的很缓慢而且它只是一些大型公司的工具,有实力的公司才会为它买单,这就让数据的控制管理变得高高在上,这就让数据作为资产还只停留在理念的层面上。
人们也一直在讨论,数据仓库能给企业带来什么?数据仓库对数据的控制主要体现在以下6个方面:
企业要通过快速、及时、方便、安全、准确、整合这6个方面对数据库进行有效的控制。下面具体介绍一下数据库对数据控制的体现方面,其内容包括以下几点:
1.对数据快速的访问
利用数据仓库模型中的软件和硬件对数据快速的访问。比如刚收集来的数据,选择是否需要存储,或是采用其它的存储技术。
2.能确保数据的整合性
当企业需要一年内的大量数据,或者是企业的视图数据时,需要数据库模型的整合支持。
3.保障数据的及时性
当数据批量抽取不足够时,需要及时的对数据进行数据流处理。
4.控制让数据的访问更便捷
不仅将数据以表格的形式进行控制管理,还可以将数据以字段的形式进行管理,这样就可以将数据分成更小更细的数据进行控制。
5.控制管理后的数据能够保证数据一致性,让数据变得更加的可信。
6.对数据进行权限管理
对数据加以控制后,可以防止企业的数据外漏,保障了数据的访问安全。
传统的数据库并不能对数据进行分析控制,数据仓库的兴起,使传统的数据库和面向分析的分析型数据分离开来,形成各自的形式。数据仓库的形态一般都是软硬一体,这样能够提供最佳的控制效果。这样的数据库会采用更先进的查询技术,以大规模并行处理和列式处理为代表。
另外,新兴的互联网企业也在尝试一些性的技术对大数据进行控制,比如谷歌的MapReduce,就能够对数据很好的控制。一些相对低廉的数据仓库也能够降低数据控制的门槛,一些小型的公司不必和大型的公司去较真价格。有开源的产品和足够的硬件存储,再加上一支专业的团队,就可以构建一个数据仓库平台,对数据进行有效的控制。
数据仓库的网络要求必须拥有稳定,而且符合功率的网速条件才可以达到要求
数据仓库是一个用于集中式数据存储和管理的系统,已经成为许多企业和组织中不可或缺的一部分。随着信息技术的不断发展和数据量的不断增加,数据仓库在数据分析和业务决策中扮演着至关重要的角色。它能够提供经过清洗、集成和转换的数据,帮助企业更好地理解自身的业务情况,发现潜在的机会和挑战。
数据仓库不仅可以存储大量的数据,而且还可以将数据按照特定的规则进行整合,帮助企业在决策制定过程中做出更准确的判断。通过数据仓库,企业可以快速地分析数据,发现数据之间的关联性,找到业务中的瓶颈和优化点。
随着人工智能、大数据等技术的快速发展,数据仓库的应用前景变得越来越广阔。数据仓库不仅可以用于企业内部的数据管理和分析,还可以应用于各行业的决策支持、市场分析等领域。
未来,数据仓库将会更加智能化,能够利用机器学习和深度学习等技术,实现更高效的数据分析和挖掘,为企业创造更大的商业价值。数据仓库不再仅仅是数据的存储和管理中心,更是数据智能化利用的重要工具。
总的来说,数据仓库作为企业数据管理和分析的核心,具有极其重要的地位和作用。在未来,随着技术的不断发展和创新,数据仓库的功能和应用范围将会不断扩展,为企业带来更多的商业机会和竞争优势。