大数据的特点主要包括哪些?
500
2024-04-26
大数据分析师需要掌握多种技能,包括数据挖掘、机器学习、数据可视化和数据库编程等。此外,他们还需要熟悉统计学和数学等基本领域,具备企业数据智能分析及应用开发能力,能够熟练运用各种分析工具,如 Python、R、SAS 等。
1.数据挖掘技术
在刚踏入大数据这行的时候,我们会有直观的感觉就是数据挖掘和数据分析十分相像,随着我们工作的逐渐深入,在挖掘与分析两个细分领域我们能体会出有明显的差别。数据挖掘涉及到的算法和模型是相当多的,比方说可视化技术、神经网络、支持向量机算法及K平均算法等。
2.数据分析技术
数据分析在整个大数据分析师的学习生涯里是一个具有挑战性的工作,因为行业的不同,所涉及到的业务就会差别较大。对于初级的数据分析师而言,会使用数据分析工具制作简单的图表,结合数据得出一定的结论是必要的。而对高级数据分析师而言,更要有缜密的思维和逻辑,能够洞察数据中存在的问题并提出行之有效的观点,这就需要对业务理解得更加深刻。
3.数据分析软件的使用
软件从易到难分别有Excel、Spass和SAS。通常作为初级的数据分析师,会使用SQL进行查询,编写Hadoop和Hive很有必要;另外,会使用Python可以在工作中起到事半功倍的效果。利用好工具和软件循序渐进,对数据进行一步步清洗和整理,最终得到一个明确的结果。
4.统计学知识
一提到概率论和统计,很多朋友都联想到了高等数学,其实就互联网的数据分析现状来说,对于统计理论这块不需要做到太深入复杂的研究,还是要在实践中去印证更为重要。
作为一名大数据分析师,需要掌握以下知识:
数据分析技能:熟练使用数据分析工具(如Python、R、SQL等)进行数据清洗、数据处理、数据可视化、数据建模等操作,以及熟悉统计学、机器学习等相关理论知识。
大数据处理技能:掌握分布式计算、分布式存储、集群管理等技术,熟悉Hadoop、Spark等大数据处理框架,能够处理TB级别以上的数据。
数据库知识:熟悉关系型数据库和非关系型数据库的设计、操作和优化,熟悉数据库索引、事务、存储过程等技术。
数据可视化:熟悉常用的数据可视化工具和技术,如Tableau、Power BI、Matplotlib、ggplot等。
业务理解:对于所在行业或领域有较为深刻的业务理解,能够理解公司的业务需求,把握数据分析的重点和难点。
沟通能力:具备良好的沟通能力,能够清晰地表达数据分析结果,并向非技术人员解释分析结果,让他们理解分析结论对业务决策的影响。
项目管理:有一定的项目管理经验,能够独立完成数据分析项目的全过程,包括项目计划、资源调配、进度控制等。
总的来说,大数据分析师需要综合掌握数据分析、大数据处理、数据库、数据可视化、业务理解、沟通能力和项目管理等多方面的知识。
大数据分析师需要学习统计学、编程能力、数据库、数据分析方法、数据分析工具等内容,还要熟练使用 Excel,至少熟悉并精通一种数据挖掘工具和语言,具备撰写报告的能力,还要具备扎实的 SQL 基础。
大数据学习首先是要由JAVA基础,如果没有基础就可以先学java,后期大数据课程会学hadoop\hive\scala\spark等,如果你是零基础可以直接选择·光环大数据零基础线下全日制班,零基础班的导师在开课初期都是从JAVA开始的而且都会讲的很慢,后期等学生慢慢的入门,凭借多年的教学经验通俗易懂的教学方式,指导学生更快的掌握技能知识!
那就看你有多少经验了,还有能力 刚入门的,大概三四千 有七八年工作经验的,两万也轻松拿到
大数据分析师是指基于各种分析手段对大数据进行科学分析、挖掘、展现并用于决策支持的过程,大数据分析师就是从事此项职业的从业人员称呼,国内已有商务部对大数据分析师进行等级认证。
行业现状不错。
从20世纪90年代起,欧美国家开始大量培养数据分析师,直到现在,对数据分析师的需求仍然长盛不衰,而且还有扩展之势。
据数联寻英发布《大数据人才报告》显示,未来3-5年内大数据人才的缺口将高达100万。根据中国商业联合会数据分析专业委员会统计,未来中国基础性数据分析人才缺口将达到1400万,而在BAT等大型互联网公司的招聘职位里,80%以上都在招大数据人才。进入大数据行业,也成了越来越多人实现职场高薪梦的路径之一。
大数据分析师的主要是通过对海量数据的分析,为企业提供客观可靠的商业洞见和决策支持。
他们会通过收集和清洗数据、分析数据和发现价值信息,推动业务发展;还会使用数据挖掘和机器学习技术,研究影响业务的各种因素,帮助企业构建数据模型并预测业务结果。
大数据培训课程内容。
1、基础部分:JAVA语言 和 LINUX系统。
2、大数据技术部分:HADOOP、HIVE、OOZIE、WEB、FLUME、PYTHON、HBASE、KAFKA、SCALA、SPARK、SPARK调优等,覆盖前沿技术:Hadoop,Spark,Flink,实时数据处理、离线数据处理、机器学习。
在这些内容中前期的基础部分的内容在大数据培训过程中是相对比较容易学会的,但是这部分的内容是相当重要的必须要掌握,基础部分学的好不好会直接导致你在大数据培训后期大数据技术部分学习的情况。
在大数据培训后期,如果你的前面的基础部分没有学好,哪后期的大数据技术部分页会学习的很差劲,因外这个阶段会涉及到许多的逻辑思维的东西,比较难掌握,所有就涉及到我们前面说的需要的大专以上学历的原因了。只有达到条件,在学习中努力一些,把基础打好,后边的学起来页就比较容易了。