大数据的特点主要包括哪些?
500
2024-04-26
金融大数据研究生一直以来备受瞩目,因为随着金融科技的快速发展,数据在金融行业中的作用日益凸显。随着大数据技术的不断进步,金融机构纷纷开始注重利用数据分析和挖掘价值,这也为金融大数据研究生提供了广阔的发展空间。
金融大数据研究生在求职市场上备受欢迎,但要想在这个领域脱颖而出,必须具备一定的专业技能和知识。大数据分析、数据挖掘、机器学习、统计分析等技能是金融大数据研究生必备的基本功,同时对金融市场和金融产品有深入的了解也是至关重要的。
金融大数据研究生毕业后可以在金融机构、科技公司、咨询机构等领域就业,从事数据分析师、风险控制专家、量化交易员等职业。随着金融科技的不断发展,金融大数据研究生的就业前景也非常广阔,工资水平也相对较高。
想成为一名优秀的金融大数据研究生,必须在学习过程中注重理论知识和实践技能的结合。除了在大学期间积极参与相关课程和项目外,还可以通过参加金融科技比赛、实习等方式锻炼自己的能力,提升竞争力。
随着金融行业对数据分析的需求不断增加,金融大数据研究生的未来发展前景非常乐观。未来,金融大数据研究生将在金融科技创新、风险管理、交易决策等方面发挥重要作用,成为金融行业中不可或缺的人才。
能选大数据。
金融科技研究生的专业和大数据基本上是一个类型,主要按着自己的喜好选择。
大数据,IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
可以考金融研究生。
大数据专业考研方向很多的。可以考本专业(数据科学与大数据技术专业)、计算机科学与技术、大数据技术与应用、数据计算及应用、高性能计算及可重构计算、网络环境下的数据与知识工程、并行及分布式处理与网格计算、嵌入式系统及应用、应用统计学专业特别是社会经济统计分析、金融统计分析、教育统计、人口统计分析等等。
大数据金融具有七大特征:高维、多源、实时性、不确定性、异构性、安全性和价值密度大。
高维指数据特征维数多,难以传统分析法处理;多源指采集数据来自不同的渠道,各异性不一;实时性指数据采集、处理和分析需要实时完成;不确定性指数据的不确定性较高,需采用多种方法进行分析;异构性指业务命题和数据源中数据的不匹配性;安全性指大数据金融的数据存储与传输对信息安全有要求;价值密度大指对数据的挖掘分析能够带来重要的经济价值。
1、 CCER资本市场数据库:CCER数据库全面覆盖了资本市场的各个层次和多个领域,内容主要包括:财务数据、交易数据、治理结构数据库等。
2、CCER宏观经济数据:宏观数据库提供完整的全国宏观和地区宏观经济数据、行业和区域经济数据以及进出口贸易等数据。
3、CCER货币市场数据:货币市场数据覆盖货币市场和货币政策、银行间拆借、银行间回购、外汇市场和黄金市场等主要货币市场交易和政策信息。
4、CCER特供数据库服务:特供数据库服务提供全国大中型企业数据、海关进出口数据以及特有的医疗数据信息。
金融数据是指金融行业所涉及的市场数据、公司数据、行业指数和定价数据等的统称,凡是金融行业涉及相关的数据都可以归入金融市场大数据体系中,为从业者进行市场分析提供参考。
以路孚特(前身是汤森路透的金融与风险业务板块)所提供的金融数据为参考,能够覆盖所有主要金融市场(包括股票、固收、商品和外汇等),帮助用户从海量的数据中寻找到合理有效的数据,并且从中判断出市场预期发展情况和价值。
数据金融是指利用大数据强大的洞察力,挖掘出金融业的内部规律,并推动互联网金融的转型与创新。
目前金融业作为传统行业之一,也会同样感受到了“数据地震”,金融机构若不能紧随经济、技术和社会的发展而发展,也就会面临被淘汰的危险。
不请自来啦,推荐几个网站:
1、镝数聚:
镝数聚-权威数据 海量聚合提供了近百个细分行业、近120多万份数据和报告,网站内容丰富,搜索关键热词和导航栏汇集了特色板块,值得没事多看看;直接搜索“金融业”这一关键词,会出来很多报告,而且相当一部分是免费的。镝数聚-权威数据 海量聚合提供了近百个细分行业、近120多万份数据和报告,网站内容丰富,搜索关键热词和导航栏汇集了特色板块,值得没事多看看;直接搜索“金融业”这一关键词,会出来很多报告,而且相当一部分是免费的。
2、政府官方提供的一些财政数据
证券监督管理委员会 http://www.csrc.gov.cn/pub/newsite/sjtj/
提供证券市场报告统计,有月数据、周数据,可以根据需要进行查找~
3、金融财经网站,这些网站上面既有股票走势情况,也有公司最近动态
第一财经研究院 http://www.cbnri.org/publication/qijianbaogao/东方财富网 http://data.eastmoney.com/center/同花顺 http://data.10jqka.com.cn/动脉橙 https://vbdata.cn/eventList投中研究院 https://www.chinaventure.com.cn/report/list.html披露易 https://www.hkexnews.hk/index_c.htm苏宁金融研究院 http://sif.suning.com/article/list/201/1巨潮资讯网 http://www.cninfo.com.cn/new/index证券时报网 https://data.stcn.com/和讯网 http://data.hexun.com/见微数据 https://www.jianweidata.com/Index
金融时间序列数据要求使用者具备一定的高等数学知识。
特别是其中一些高级的模型,如分析波动率的 ARCH/GARCH 模型、极值理论、连续随机过程、状态空间模型等都对使用者的数学水平有着极高的要求。
因此,在很多人眼中,金融时间序列分析无疑带着厚厚的面纱,令人望而却步。
然而,如果学习的目的是为了解金融时间序列的特点、熟悉金融时间序列分析的目的、并使用线性但非常实用的模型对金融时间序列进行预测并以此制定量化策略,那么只要具备简单的统计学基础,就完全能够实现这些目标。
金融时间序列分析考虑的是金融变量(比如投资品收益率)随时间演变的理论和实践。
任何金融时间序列都包含不确定因素,因此统计学的理论和方法在金融时间序列分析中至关重要。
金融资产的时间序列常被看作是未知随机变量序列随时间变化的一个实现。
通常假设该随机变量序列仅在时间轴上的离散点有定义,则该随机变量序列就是一个离散随机过程。比如股票的日收益率就是离散的时间序列。
在量化投资领域,我们的目标是通过统计手段对投资品的收益率这个时间序列建模,以此推断序列中不同交易日的收益率之间有无任何特征,以此来预测未来的收益率并产生交易信号。
要钱。做金融数据,是一种科技数据业务,肯定是有偿的,不可能是无偿服务。而且现在都就行依靠大数据创新金融产品,大数据是核心,这些核心数据都是难得的,都需要通过外部来获得,如果你有数据来源,你完全可以做有偿服务,向银行推送,并要求银行付费使用。