市场调查与统计分析专业是干啥的?

admin 0 2024-06-19

一、市场调查与统计分析专业是干啥的?

市场调查与统计分析专业是从事市场调查与统计分析工作的专业。该专业培养具有扎实的技术技能和职业素养,能够从事不同形式市场调查、数据采集和数据分析工作的高素质技术技能人才。

主要专业课程包括《市场调研与分析》、《Excel数据整理与分析》、《SPSS数据处理与分析》、《数据解读与呈现》、《CATI调查》、《MySQL数据库》等。

毕业生可以从事数据分析师、运营数据分析专员、统计分析员、数据分析师、市场调查分析师、产品数据分析专员、市场推广专员等岗位工作。

二、统计数据的概念和类型是什么?

统计数据是对客观现象计量的结果,不同的客观现象能够予以计量或测度的程度是不同的。统计数据大体上分为两种类型:定性数据与定量数据。

定性数据

定性数据也称品质数据,它说明的是现象的品质特征,只能用文字或数字代码来表示,不能用数值表示。定性数据具体可分为定类数据和定序数据。

1.定类数据

定类数据是对现象进行分类的结果,表现为类别,由定类尺度计量而成。定类尺度也称类别尺度或列名尺度,是最粗略、计量层次最低的计量尺度。定类尺度只能按照现象的某种属性对其进行平行的分类或分组。

例如,人口按照性别分为男、女两类。又如,企业按照经济类型分为国有经济、集体经济、股份制经济、外商投资经济等。定类尺度只能测度现象之间的类别差,不能反映各类现象之间的其他差别。

定类数据是层次最低的数据。从数学运算的特性来看,定类数据只有等于或不等于的性质。

2.定序数据

定序数据是对现象按照一定的排序进行分类的结果,表现为有顺序的类别,由定序尺度计量而成。定序尺度又称顺序尺度,是对现象之间等级差别和顺序差别的一种测度。它不仅可以测度现象之间的类别差,还可以测度次序差。

例如,学生的考试成绩可分为优、良、中、及格、不及格。又如,消费者对某产品的满意程度可分为很满意、满意、一般、不满意、很不满意等。定序尺度不能测量类别之间的准确差值,只能比较大小,不能进行加、减、乘、除等数学运算。

定序数据的层次高于定类数据。从数学运算的特性来看,定序数据除了具有等于或不等于的性质以外,还有大于或小于之分。

定量数据

定量数据也称数量数据,它说明的是现象的数量特征,是能够用数值来表示的。定量数据具体可分为定距数据和定比数据。

1.定距数据

定距数据是既能反映现象所属的类别和顺序,又能反映现象类别或顺序之间数量差距的数据,由定距尺度计量而成。定距尺度也称间隔尺度,通常使用自然或物理单位作为计量尺度。定距数据不仅能将现象区分为不同类型并进行排序,而且可以准确指出类别之间的差距是多少。

例如,甲、乙两位学生某门课程的考试成绩分别为86分和55分,不仅说明甲学生的成绩良好,乙学生的成绩不及格,甲学生的分数高于乙学生,而且能说明甲学生的分数比乙学生高31分。

定距数据的层次高于定序数据。从数学运算的特性来看,定距数据除了具有等于或不等于、大于或小于的性质以外,还适合进行加减计算,但不适合进行乘除运算。其原因是定距尺度中没有绝对的零点。定距尺度中的“0”表示一个数值,即“0”水平,而不是表示“没有”或“不存在”。

例如,一个学生的统计学考试成绩为0分,表示他的统计学成绩水平为0,并不表示他没有考试成绩或没有任何统计学知识。又如,一个地区的气温为0摄氏度,表示的是温度的水平,并不是没有温度。可见,定距尺度中的“0”是一个有意义的数值。

2.定比数据

定比数据不仅能体现现象之间的数量差距,还能进行对比计算,即通过计算两个测度值之间的比值来体现相对程度的数据,由定比尺度计量而成。定比尺度也称为比率尺度,它有一个绝对“零点”。在定比尺度中,“0”表示“没有”或“不存在”。

例如,一个人的收入为“0”,表示这个人没有收入。因此,定比尺度除了具有上述三种计量尺度的全部特性以外,还具有一个特性,那就是可以计算两个测度值之间的比值。这也是它与定距尺度的唯一差别。现实生活中,绝大多数的经济变量都可以进行定比测度。

定比数据是最高层次的数据。从数学运算的特性来看,定比数据除了具有等于或不等于、大于或小于的性质,可以进行加减计算以外,还可以进行乘除运算。例如,甲的工资为6000元,乙的工资为12000元,则乙的工资为甲的2倍。

三、请教数据统计结果代表的意义?

数据统计结果代表的意义:

1.从整体上反映和分析事物数量特征,观察事物的本质和发展规律,作出正确的判断。例如,只有对大量的生育人口进行观察才能得出男孩、女孩的出生比例,若只对个别家庭观察是很难得出这一结论的

2.从宏观上看,是国家宏观调控和管理的重要工具。

3.从微观上看,是企业管理与决策的依据。

4.日常生活中,统计可以宣传群众、教育群众。

5.是进行科学研究的重要方法。通过数字揭示事物在特定时间方面的数量特征,以便对事物进行定量乃至定性分析,从而做出正确的决策。正因如此,统计信息越来越多地和其他信息结合在一起,如情报信息、商品信息等。而诸如此类信息,以统计数字显示或以统计数字为依据,可利用程度大为提高。

四、数据统计优缺点?

数据统计的优点:

1、耗时少:因为是次要数据,所以通常比较便宜,而且耗时较少,因为是别人编译的。

2、模式和相关性清晰可见:统计数据是已经分析过的数据,因此模式和相关性已经完成并且清晰可见。3、取自大样本,泛化性高:统计数据是从非常大的数据样本中收集的数据。这意味着泛化程度更高。

4、可以使用和重复使用来检查不同的变量:统计数据是可以使用和重复使用的数据。它不需要使用一次,因为可以使用相同的数据做出不同的决定。

5、可模仿:可模仿统计数据检查变化,增加数据的可靠性和代表性。 6、快速:与其他形式的数据相比,统计数据是可以相对快速和轻松地进行分析的数据。

7、标准化:以标准化的方式收集统计信息,赋予数据意义。

8、直截了当:统计数据通常易于分析。它是已经合成的数据,因此只需要很少的分析。

9、可靠:机构内外的决策者(例如资助者、政府)经常要求并尊重它们。这使它们可靠和准确。

10、质量数据:它们支持从问卷、访谈等获得的具有“确凿事实”的定性数据。

11、基准测试:统计数据对于基准测试很有用。它们可用于在组织或项目中进行比较并设定新的标准和目标。

数据统计的缺点:

1、未验证:研究人员无法检查有效性,也无法找到因果理论的机制,只能从数据中绘制模式和相关性。这意味着研究人员在验证数据的有效性和真实性方面的选择有限。

2、容易被误解:统计数据通常是次要数据,这意味着它很容易被误解。这使研究人员容易受到信息失真的影响,而无法进行确认。

3、它可以被操纵:统计数据很容易被滥用,它可以被操纵和措辞以表明研究人员想要表明的观点。这使得数据缺乏客观性,并且在本质上更加主观。

4、因为这通常是次要数据,所以很难访问和检查:统计数据大多是只能访问的次要数据。由于数据的主要来源不可用,因此可能很难检查和验证数据。

5、不合适:统计数据不是深入了解问题并找出解决突出问题的方法的合适方法。这是因为数据是由独立研究人员从主要来源收集的。

6、评价不理想:不适合评价用户的意见、需求或对服务的满意度,因为它们是主观的。研究人员不能依靠统计来衡量客户的幸福感或满意度。

7、费时:安排数据收集方法(例如联系供应商、与IT 部门联络)可能会很费时间。这是因为初级研究中使用的数据收集方法取决于研究人员的主观视角。

8、绩效管理:统计数据不能用来衡量组织的绩效管理,因为它已经过时了。

9、决策:虽然统计数据可用于进行未来的推论,但不能依赖于在组织环境中做出决策。

10、比较:统计数据不能用于与当前数据或未来数据进行比较,因为可能不知道数据收集和数据分析的方法

大数据的发展使信息技术变革重点?
专科的大数据分析是什么?
相关文章